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We consider the growth of a single fcc dendrite into an undercooled melt. Unlike most simulations of this
well-studied phenomenon, we adopt an atomistic growth model that uses a kinetic Monte Carlo technique to
track the free boundary. The model allows for both phase change and exchange between liquid and solid atoms
on the surface of the crystal and is coupled to a continuum model for heat transport away from the interface.
For small length and time scales, this approach provides simple, effective front tracking with fully resolved
atomistic detail. An interesting finding is that the surface exchange mechanism appears to be important for
capturing effects due to anisotropy that are needed to produce realistic growth shapes.
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The growth of a dendrite into an undercooled melt is a
well-studied phenomenon, typically modeled from a macro-
scopic point of view as a Stefan �i.e., free-boundary� problem
�1�. For pure materials, morphological instability leading to
dendritic growth is the result of interfacial perturbations
growing into an environment that is below the material’s
melting temperature �2�. This enhances the subsequent
growth of the perturbations and eventually leads to an intri-
cate, snow-flake-like growth pattern. When simulated using
continuum models, there are two essential challenges: track-
ing the free-boundary and resolving the thermal boundary
layer ahead of the front. Much effort has gone into each of
these issues, with the phase-field �3–5� and level-set methods
�6� featuring prominently in the first, and adaptive mesh
techniques �4� and random walks with adaptive step sizes �7�
in the second.

In this paper, we focus on the front-tracking problem,
adopting a discrete, atomistic model in the spirit of the ki-
netic Monte Carlo �KMC� simulations that are popular in the
epitaxial growth literature �8�. This approach is closely re-
lated to that in Ref. �9�, where KMC was used to examine
the evolution of a face centered cubic �fcc� nanocluster to-
ward its equilibrium Wulff shape. A number of related stud-
ies have examined the growth of simple cubic crystals, start-
ing with work on diffusion limited aggregation �10�,
continuing with a number of related two-dimensional studies
�11�, and including at least one study of three-dimensional,
simple cubic growth �12�. Here, we consider the combination
of growth and surface diffusion for an fcc crystal. For con-
venience, the interface kinetics are coupled to a continuum
model for heat flow, which is then discretized, in both
phases, on the same fcc lattice. The aim is to demonstrate
that this approach to front tracking is relatively easy to
implement and competitive on scales ranging from nanom-
eters up to several microns while providing a natural way to
incorporate both anisotropy and atomistic effects. The model
can be extended, as in some of the studies cited above, to
consider discrete models for heat flow, allowing for addi-
tional effects due to thermal fluctuations.

In the sharp-interface formulation of the continuum
model, the computational domain ��R3 is typically decom-
posed into an inner, solid region �S and an outer, liquid
region � \�S, separated by a closed surface ��S. The prin-
cipal governing equation is the heat equation, with the outer

boundary �� held at a fixed temperature TB�TM, the tem-
perature of the solid-liquid interface determined by the
Gibbs-Thomson equation, and the interface motion deter-
mined by a Stefan condition that balances the latent heat
release with the heat flux away from the interface

�tT = ��2T, x � � , �1�

T = TB, x � �� , �2�

T = TM −
�TM

�L
� · n̂�x�, x � ��S, �3�

�Lvn̂ = k��T · �n̂�S − �T · �n̂�L�, x � ��S. �4�

The thermal diffusivity � and density � have been assumed
to be the same in both phases, n̂ is the normal pointing into
the liquid, k=��cp is the thermal conductivity, L the latent
heat released per unit mass, and vn̂ is the normal velocity of
the interface. The interfacial temperature is given by the
equilibrium melting temperature for a flat interface TM modi-
fied by a curvature term accounting for surface energy �the
Gibbs-Thomson effect.� With the unit normal pointing into
the liquid, a spherical region has positive mean curvature and
a lower equilibrium melting temperature. After scaling
lengths on the distance between neighboring lattice sites a,
time with the thermal diffusion time scale a2 /�, and tem-
perature with �T=TM −TB, there are two principal param-
eters �in the absence of anisotropy�—a surface energy pa-
rameter 	 and the Stefan number S:

	 =
�TM

a�L�T
, S =

L

cp�T
.

In the discrete model, the Stefan number is related to the
attachment rate and surface energy can be included by mak-
ing the melting temperature depend on the number of solid
phase nearest neighbors. Other effects, such as kinetic under-
cooling for a rapidly solidifying interface can also be in-
cluded. The surface energy � and diffusivity � are often
modified to model anisotropy by making them a function of
orientation. Indeed, this is essential for producing realistic
results with the continuum model �5�. In the discrete model,
one might have thought that the underlying lattice would
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play this role, but we find that it is also essential to include a
surface exchange process that conserves the number of atoms
of each phase while allowing the shape of the interface to
change.

The fcc lattice can be defined using integer combinations
xijk= ia+ jb+kc of three basis vectors

a =
î + ĵ
�2


 a, b =
î + k̂
�2


 a, c =
k̂ + ĵ
�2


 a ,

that are themselves formed by combinations of Cartesian

unit vectors î, ĵ, and k̂ and the equilibrium distance between
two atoms a. In practice one need only store and manipulate
integer triples �i , j ,k�, converting to Cartesian coordinates
for visualization. Upon scaling, �a ,b ,c� become unit vectors
and it is useful to expand this set to the twelve vectors

�ei�i=1
12 = ��a, � b, � c, � �a − b�, � �b − c�, � �c − a��

that point to the nearest neighbors of a given lattice site,
storing them in the skewed coordinate system, so that they
have integer components.

The solid atoms are constrained to lie on the FCC lattice
and the heat equation is solved numerically using a discreti-
zation on this same lattice in both phases. As with any Ising
model, we use an order parameter �ijk� �0,1�, to specify
liquid �0� or solid �1� phase. In addition to this phase con-
figuration, we associate a temperature Tijk with each lattice
point. Together, � and T specify the system state, which will
evolve through a combination of thermal diffusion and a sto-
chastic model for surface evolution.

The solidification model is analogous to the combination
of the Gibbs-Thomson equation �3� and the Stefan condition
�4�. The former suggests associating a melting temperature

TI�Nijk�=1+ 	̃�Nijk−3� with each lattice site, where Nijk is
the number of solid nearest neighbors, temperature has been

scaled and translated so that TM =1, and 	̃ is the surface
energy parameter identified above times an unspecified geo-
metric factor that translates coordination number into a mea-
sure of curvature. Note that TM is taken to be the melting
temperature of the �111� facet, as most atoms will solidify or
melt along such facets when they have three nearest neigh-
bors. We assume that liquid sites below this temperature and
solid sites above this temperature are susceptible to phase
change, but neglect nucleation �which is equivalent to setting
TI�0�=− and TI�12�=�. For the problem of solidification
into an undercooled melt specified above, only freezing will
occur.

Liquid sites with temperatures Tijk
n+1�TI have their tem-

peratures pinned at TI. Thus, these sites serve as sources of
latent heat. In the continuum model, the Stefan condition �4�
governs the amount of heat needed to convert the phase of
such atoms. In the simulations presented below, this condi-
tion is enforced in the mean by setting the solidification rate
to

qijk
S = 	J�xijk� , if �ijk = 0 and Nijk � 0,

0, otherwise,



where J �see Eq. �6� below� represents the net heat loss at
site xijk measured in units of latent heat release per atom
upon solidification. After an atom has solidified, the con-
straint on its temperature is released. The model can be
modified so that heat is strictly conserved by coupling the
growth model to a discrete model for heat transfer.

Anisotropy is included in the model as a surface diffusion
process where solid atoms in contact with one or more liquid
sites are susceptible to exchange with liquid sites that have at
least one additional solid neighbor. This latter rule is similar
to what is called the “solid-on-solid” �SOS� assumption in
the epitaxy literature and prevents most detachments. Upon
exchange, the liquid site retains its �previously constrained�
temperature value and the solid site becomes a solidification
site with an appropriately constrained melting temperature.
Following the standard practice for surface diffusion used in
epitaxial growth simulations, we set the hopping rates

qijk
H = 	�e−�E/kBT, if �ijk = 1 and Nijk � 12,

0, otherwise,



where the prefactor ��1013 hz is an attempt frequency that
depends weakly on temperature, but is usually modeled as a
constant, kB is Boltzmann’s constant, and �E is an energy
barrier that must be overcome in moving from a local energy
minimum to an adjacent one in the system’s configuration
space. We adopt the simple model in Ref. �9� with �E
=ENNijk proportional to the coordination number. This is also
a common assumption with SOS models for simple cubic
growth because it is extremely fast, has a simple heuristic
explanation, uses a minimal set of parameters, and is easily
reproduced by others.

We assume that all of the random processes occur inde-
pendent of one another �i.e., they are Poisson processes.� At
each KMC timestep �tn, a hopping �exchange� or solidifica-
tion �flip� event is selected with probability proportional to
their rates and a random waiting time is associated with the
event.

When the accumulated microtimesteps �tn exceed a mac-
rotimestep �t the temperature field is updated, subject to the
interfacial constraints described above, using an explicit dis-
critization of Eq. �1� tailored to the fcc lattice:

Tijk
n+1 = Tijk

n +
�t

2
�

m=1

12

Tn�xijk + em� − 12Tijk
n � . �5�

Note that this comes with the severe time-step restriction of
�t�1 /6 for numerical stability. More efficient methods are,
however, not so easily adapted to the fcc lattice. For the
immediate purpose of studying the merits of KMC as a front-
tracking algorithm, we therefore accommodate the time-step
restriction by assuming a very small thermal diffusivity and
Stefan number. If we take S−1=0.9, for example, we boost
the attachment rate of atoms by about three orders of mag-
nitude over more realistic values while staying under the
hypercooling threshold S−1�1 �1�. To produce realistic den-
drite shapes, we find that we must also boost the hopping
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rates, controlled by the nondimensional parameter K
=�a2 /�, by a similar order of magnitude.

Note that with the maximum value of the time step �t
=1 /6, Eq. �5� reduces to a simple average over the twelve
nearest neighbors and the attachment rate becomes

J = S−1 1

12 
m=1

12

�TI�xijk� − Tn�xijk + em�� . �6�

In practice the time spent tracking the front is small com-
pared to that solving the diffusion equation. Indeed, if, as an
experiment, the temperature field is fixed so that it simply
decays rapidly with distance from the interface, results quali-
tatively similar to those shown here can be obtained in min-
utes rather than hours. In part, this is due to the time step
restriction just mentioned, but is also because of an effi-
ciently implemented KMC algorithm described in Ref. �13�.

For the results presented below, the surface energy param-

eter is fixed at 	̃=0.01, the scaled nearest-neighbor energy

Ẽ=EN / �kBTM�=0.0034, and the computational domain is a
sphere with a radius 25 times the radius of the initial solid
region, a spherical cluster of about 400 atoms. The initial
temperature is set to TM in the solid and TB in the liquid. We
briefly explore the behavior of the growth as the remaining
parameter, the surface diffusion prefactor K, is varied. The
principal observation is that the strength of this relative to
the growth rate controls the extent to which faceting and
anisotropy dominate the morphology.

Figure 1 shows the solid atoms, colored by coordination,
that lie on the surface of the crystal. In the first image, the
crystal contains about 104 atoms and, in the second, there are
about 105 atoms �the images are not to scale�. These images
correspond to two times in the same simulation that started
from a spherical cluster of about 500 atoms. This simulation
had a large value of K=106, so that surface diffusion domi-
nates, especially during the early stages of growth, when the
surface area is small. In this regime, the crystal grows close
to its equilibrium Wulff shape, and the results are similar to
that in Ref. �9�. The truncated octahedral shape can be un-
derstood as a competition between the two slowest growing
facets—the �100� and �111� facets, where the diffusing atoms
have coordination numbers of 4 and 3, respectively. Note

that for an equal number of exposed lattice sites, there would
be a net flux of atoms from a �111� facet to a �100� facet, due
to the faster hopping rate on the former. Thus, nucleation is
favored on the �100� facet. Due to the geometry, each time a
layer is completed, a facet shrinks somewhat. The dominance
of the �111� facets at early times can therefore be traced back
to the slower nucleation rate.

During growth, the surface is nearly isothermal, with T
�TM. As the crystal becomes larger, the isotherms near pro-
truding regions of the surface become compressed. This ef-
fect is most pronounced at the vertices of the octahedral
structure. This compression, which implies a steeper tem-
perature gradient, enhances nucleation, and we can see in
Fig. 1�b� that there is a cascade of steps that starts to flow
away from the vertices. As the crystal becomes larger, this
effect begins to change the morphology of the crystal. In
particular, note that the edges are no longer straight in Fig.
1�b�.

In Fig. 2, the solidifying atoms �i.e., liquid atoms on the
surface� are colored using the heat flux Jijk. The images
shown are from the late stages of several different simula-
tions where the surface diffusion parameter K has been ad-
justed to exhibit three characteristic morphologies. The lower
image correspond to a much later stage of the simulations
exhibited in Fig. 1, with more than 106 atoms now repre-
sented and the instability having produced the primary
branches of a dendrite. The branching process occurs at ear-
lier stages of growth if surface diffusion is less active. In Fig.
2�b�, secondary and nascent tertiary branches have already
formed when the crystal is about the same size as that in Fig.

(a) (b)

FIG. 1. �Color online� Two surface images from the early stages
of a single simulation, showing about 104 �left� and 105 �right�
atoms colored by coordination number Nijk.

(b)(a)

(c)

FIG. 2. �Color online� Three surface images from the late stages
of three separate simulations, showing about 106 atoms colored by
temperature gradient. The rate of surface diffusion is increasing by
a factor of 10 as you move from one image to the next.
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2�a�. If the surface diffusion rate is dropped another order of
magnitude, the dendrite loses its octahedral symmetry and
takes on a cauliflowerlike appearance.

In summary, KMC appears to be a promising alternative
to modeling and simulation of dendritic growth on atomistic
scales. Enlarged versions of the images shown here, avail-
able from the author, reveal a spectacular amount detail that
offers enhanced insight into the growth process. In future

work, there is every reason to expect that the range of pa-
rameters addressable by this technique can be greatly in-
creased by coupling it to more efficient methods for solving
the heat equation.
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